3º Ano A e 3° Ano B - Biologia - Profa Solange
Período para entrega: Até 23/09/2020
Unidade Temática: Origem da Vida
Instruções:
1- Fazer a leitura e interpretação de texto.
2- Assistir a vídeo aula (Khan Academy), link disponibilizado abaixo.
3- Responder as questões disponibilizadas logo abaixo do texto.
4- Postar no Blogger e enviar para o e-mail da professora: solangestandbyme@gmail.com
https://youtu.be/yX9zLkmIwC8
Os experimentos de Pasteur
Somente por volta de 1860, com os experimentos realizados por Louis Pasteur (1822 – 1895), conseguiu-se comprovar definitivamente que os microorganismos surgem a partir de outros preexistentes.
Os experimentos de Pasteur estão descritos e esquematizados na figura abaixo:
A ausência de microrganismos nos frascos do tipo “pescoço de cisne” mantidos intactos e a presença deles nos frascos cujo “pescoço” havia sido quebrado mostram que o ar contém microorganismos e que estes, ao entrarem em contato com o líquido nutritivo e estéril do balão, desenvolvem-se. No balão intacto, esses microorganismos não conseguem chegar até o líquido nutritivo e estéril, pois ficam retidos no “filtro” formado pelas gotículas de água surgidas no pescoço do balão durante o resfriamento. Já nos frascos em que o pescoço é quebrado, esse “filtro” deixa de existir, e os micróbios presentes no ar podem entrar em contato com o líquido nutritivo, onde encontram condições adequadas para seu desenvolvimento e proliferam.
A hipótese da biogênese passou, a partir de então, a ser aceita universalmente pelos cientistas.
Como referenciar: "Os experimentos de Pasteur" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:06. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Evolucao/evolucao3.php
Geração espontânea ou abiogênese
Até meados do século XIX, os cientistas acreditavam que os seres vivos eram gerados espontaneamente do corpo de cadáveres em decomposição; que rãs, cobras e crocodilos eram gerados a partir do lodo dos rios.
Essa interpretação sobre a origem dos seres vivos ficou conhecida como hipótese da geração espontânea ou da abiogênese (a= prefixo de negação, bio = vida, genesis = origem; origem da vida a partir da matéria bruta).
Pesquisadores passaram, então, a contestar a hipótese de geração espontânea, apresentando argumentos favoráveis à outra hipótese, a da biogênese, segundo a qual todos os seres vivos originam-se de outros seres vivos preexistentes.
Biogênese versus abiogênese
Os experimentos de Redi
Em 1668, Francesco Redi (1626 -1697) investigou a suposta origem de vermes em corpos em decomposição. Ele observou que moscas são atraídas pelos corpos em decomposição e neles colocam seus ovos. Desse ovos surgem as larvas, que se transformam em moscas adultas. Como as larvas são vermiformes, os “vermes” que ocorrem nos cadáveres em decomposição nada mais seriam que larvas de moscas. Redi concluiu, então, que essas larvas não surgem espontaneamente a partir da decomposição de cadáveres, mas são resultantes da eclosão dos ovos postos por moscas atraídas pelo corpo em decomposição.
Para testar a sua hipótese, Redi realizou o seguinte experimento: colocou pedaços de carne crua dentro de frascos, deixando alguns cobertos com gase e outros completamente abertos. De acordo com a hipótese da abiogênese, deveriam surgir vermes ou mesmo mosca nascidos da decomposição da própria carne. Isso, entretanto, não aconteceu. Nos frascos mantidos abertos verificaram-se ovos, larvas e moscas sobre a carne, mas nos frascos cobertos gaze nenhuma dessas formas foi encontrada sobre a carne. Esse experimento confirmou a hipótese de Redi e comprovou que não havia geração espontânea de vermes a partir de corpos em decomposição.
Os experimentos de Redi conseguiram reforçar a hipótese da biogênese até a descoberta dos seres microscópicos, quando uma parte dos cientistas passou novamente a considerar a hipótese da abiogênese para explicar a origem desses seres.
Segundo esses cientistas, os microorganismos surgem espontaneamente em todos os lugares, independentemente da presença de outro ser vivo. Já outro grupo de pesquisadores não aceitava essas explicações. Para eles os microorganismos somente surgiam a apartir de “sementes” presentes no ar, na água ou no solo. Essas “sementes”, ao encontrarem locais adequados, proliferavam (interpretação coerente com a hipótese da biogênese).
Os experimentos de Needham e Spallanzani
Em 1745, o cientísta inglês John T. Needham (1713-1781) realizou vários experimentos em que submetia à fervura frascos contendo substancias nutritivas. Após a fervura, fechava os frascos com rolhas e deixava-os em repouso por alguns dias. Depois ao examinar essas soluções ao microscópio, Needham observava a presença de microorganismos.
A explicação que ele deu a seus resultados foi de que os microorganismos teriam surgido por geração espontânea. Ele dizia que a solução nutritiva continha uma “força vital” responsável pelo surgimento das forças vivas.
Posteriormente, em 1770, o pesquisador italiano Lazzaro Spallanzani (1729-1799) repetiu os experimentos de Needham, com algumas modificações, e obteve resultados diferentes.
Lazzaro Spallanzani
Spallanzani colocou substâncias nutritivas em balões de vidro, fechando-os hermeticamente. Esses balões assim preparados eram colocados em calderões com água e submetidos à fervura durante algum tempo. Deixava resfriar por alguns dias e então ele abria os frascos e observava o líquido ao microscópio. Nenhum organismo estava presente.
Spallanzani explicou que Needham não havia fervido sua solução nutritiva por tempo suficientemente longo para matar todos os microrganismos existentes nela e, assim, esterelizá-la. Needham respondeu a essas críticas dizendo que, ao ferver por muito tempo as substâncias nutritivas em recipientes hermeticamente fechados, Spallanzani havia destruído a “força vital” e tornado o ar desfavorável ao aparecimento da vida.
Nessa polêmica, Needham saiu fortalecido.
Como referenciar: "Geração espontânea ou abiogênese" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:07. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Evolucao/evolucao2.php
A hipótese de Oparin e Haldane
Trabalhando independentemente, o cientista russo Aleksander I. Oparin (1894-1980) e o cientista inglês John Burdon S. Haldane (1892 – 1964) propuseram na década de 1920, hipóteses semelhantes sobre como a vida teria se originado na Terra.
Apesar de existirem pequenas diferenças entre as hipóteses desses cientistas, basicamente eles propuseram que os primeiros seres vivos surgiram a partir de moléculas orgânicas que teriam se formado na atmosfera primitiva e depois nos oceanos, a partir de substâncias inorgânicas.
John Burdon S. Haldane e Aleksander I. Oparin
Vamos, de modo simplificado, apresentar uma síntese de dessas ideias: as condições da Terra antes do surgimento dos primeiros seres vivos eram muito diferentes das atuais. As erupções vulcânicas eram muito frequentes, liberando grande quantidade de gases e de partículas para a atmosfera.
Esses gases e partículas ficaram retidos por ação da força da gravidade e passaram a compor a atmosfera primitiva.
Embora não exista um consenso sobre a composição da atmosfera primitiva, foi proposto no início que, provavelmente, era formada por metano (CH4), amônia (NH3), gás hidrogênio (H2) e vapor d’água (H2O). Não havia gás oxigênio (O2) ou ele estava presente em baixíssima concentração; por isso se fala em ambiente redutor, isto é, não oxidante. Nessa época, a Terra estava passando por um processo de resfriamento, que permitiu o acúmulo de água nas depressões da sua costa, formando os mares primitivos.
As descargas elétricas e as radiações eram intensas e teriam fornecido energia para que algumas moléculas presentes na atmosfera se unissem, dando origem a moléculas maiores e mais complexas: as primeiras moléculas orgânicas. É importante lembrar que na atmosfera daquela época, diferentemente do que ocorre hoje, não havia o escudo de ozônio (O3) contra as radiações, especialmente a ultravioleta, que, assim, atingiam a Terra com grande intensidade.
As moléculas orgânicas formadas eram arrastadas pelas águas das chuvas e passavam a se acumular nos mares primitivos, que eram quentes e rasos. Esse processo, repetindo-se ao longo de muitos anos, teria transformado os mares primitivos em verdadeiras “sopas nutritivas”, ricas em matéria orgânica. Essas moléculas orgânicas poderia ter-se agregado, formando coacervados, nome derivado do latim coacervare, que significa formar grupos. No caso, o sentido de coacervados é o de conjunto de moléculas orgânicas reunidas em grupos envoltos por moléculas de água.
Esses coacervados não eram seres vivos, mas uma primitiva organização das substâncias orgânicas em um sistema semi-isolado do meio, podendo trocar substâncias com o meio externo e havendo possibilidade de ocorrerem inúmeras reações químicas em seu interior.
Não se sabe como a primeira célula surgiu, mas pode-se supor que, se foi possível o surgimento de um sistema organizado como os coacervados, podem ter surgido sistemas equivalentes, envoltos por uma membrana formada por lipídios e proteínas e contendo em seu interior a molécula de ácido nucléico. Com a presença do ácido nucléico, essas formas teriam adquirido a capacidade de reprodução e regulação das reações internas.
Nesse momento teriam surgido os primeiros seres vivos que, apesar de muito primitivos, eram capazes de se reproduzir, dando origem a outros seres semelhantes a eles.
Como referenciar: "Hipótese de Oparin - Coacervados" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:10. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Evolucao/evolucao4.php
O experimento de Miller
Em 1950, dois pesquisadores da Universidade de Chicago, Stanley Miller e Harold Urey, desenvolveram um aparelho em que simularam as condições supostas para a Terra primitiva.
Com sucesso, obtiveram resultados que confirmaram a hipótese de Oparin.
Inicialmente, obtiveram com o seu experimento pequenas moléculas que, com o passar do tempo, se combinaram formando moléculas mais complexas, inclusive os aminoácidos glicina e alanina. Posteriormente, novas pesquisas obtiveram outros aminoácidos e vários compostos de carbono.
Os protobiontes de Oparin receberam diferentes nomes dados pelos cientistas, dependendo de seu conteúdo: microsferas, protocélulas, micelas, lipossomos e coacervados. Estes possuem uma “membrana” dupla, formada por duas camadas lipídicas, à semelhança das membranas celulares.
Ampliando a hipótese de Oparin: proteinoides e ribozimas
No começo da década de 1970, o biólogo Sidney Fox aqueceu, a seco, a 60ºC, uma mistura de aminoácidos. Obteve pequenos polipeptídeos, a que ele chamou de proteinoides. A água resultante dessa reação entre aminoácidos evaporou em vistude do aquecimento. Fox quis, com isso, mostrar que pode ter sido possível a união de aminoácidos apenas com uma fonte de energia, no caso o calor, e sem a presença de água. Faltava esclarecer o possível local em que essa união teria ocorrido.
Recentemente, os cientistas levantaram a hipótese de que a síntese de grandes moléculas orgânicas teria ocorrido na superfície das rochas e da argila existente na Terra primitiva.
A argila em particular, teria sido o principal local da síntese. Ela é rica em zinco e ferro, dois metais que costumam atuar como catalisadores em reações químicas. A partir daí, vagarosamente ocorrendo as sínteses, as chuvas se encarregariam de lavar a crosta terrestre e levar as moléculas para os mares, transformando-os no imenso caldo orgânico sugerido por Oparin. Essa descoberta, aliada aos resultados obtidos por Fox, resolveu o problema do local em que possivelmente as sínteses orgânicas teriam ocorrido.
Havia, no entanto, outro problema: as reações químicas ocorrem mais rapidamente na presença de enzimas. Somente a argila, ou os metais nela existentes, não proporcionariam a rapidez necessária para a ocorrência das reações. Atualmente, sugere-se que uma molécula de RNA teria exercido ação enzimática. Além de possuir propriedades internacionais, descobriu-se que o RNA também tem características de enzima, favorecendo a união de aminoácidos.
Assim, sugerem os cientistas, RNAs produzidos na superfície de argilas, no passado, teriam o papel de atuar como enzimas na síntese dos primeiros polipeptídeos. Esses RNAs atuariam como enzimas chamadas ribozimas e sua ação seria auxiliada pelo zinco existente na argila. Outro dado que apoia essa hipótese é o fato de que, colocando moléculas de RNA em tubo de ensaio com nucleotídeos de RNA, ocorre a síntese de mais RNA sem a necessidade de enzimas.
Como referenciar: "O experimento de Oparin Miller" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:11. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Evolucao/evolucao5.php
Hipótese autotrófica
Alguns cientistas têm argumentado que os seres vivos não devem ter surgido em mares rasos e quentes, como proposto por Oparin e Haldane, pois a superfície terrestre, na época em que a vida surgiu, era um ambiente muito instável.
Meteoritos e cometas atingiam essa superfície com muita frequência, e a vida primitiva não poderia se manter em tais condições.
Logo no início da formação da Terra, meteoritos colidiram fortemente com a superfície terrestre, e a energia dessas colisões era gasta no derretimento ou até mesmo na vaporização da superfície rochosa. Os meteoritos fragmentavam-se e derretiam, contribuindo com sua substância para a Terra em crescimento. Um impacto especialmente violento pode ter gerado a Lua, que guarda até hoje em sua superfície as marcas desse bombardeio por meteoritos. Na superfície da Terra a maioria dessas marcas foi apagada ao longo do tempo pela erosão.
A maioria dos meteoritos se queima até desaparecer quando entra na atmosfera terrestre atual e brilha no céu como estrelas cadentes. Nos primórdios, os meteoritos eram maiores, mais numerosos e atingiam a Terra com mais frequência.
Alguns cientistas especulam que os primeiros seres vivos não poderiam ter sobrevivido a esse bombardeio cósmico, e propõem que a vida tenha surgido em locais mais protegidos, como o assoalho dos mares primitivos.
Em 1977, foram descobertas nas profundezas oceânicas as chamadas fontes termais submarinas, locais de onde emanam gases quentes e sulfurosos que saem de aberturas no assoalho marinho. Nesses locais a vida é abundante. Muitas bactérias que aí vivem são autótrofas, mas realizam um processo muito distinto da fotossíntese. Onde essas bactérias vivem não há luz, e elas são a base de uma cadeia alimentar peculiar. Elas servem de alimento para os animais ou então são mantidas dentro dos tecidos deles. Nesse caso, tanto os animais como as bactérias se beneficiam: elas têm proteção dentro do corpo dos animais, e estes recebem alimentos produzidos pelas bactérias.
A descoberta das fontes termais levantou a possibilidade de que a vida teria surgido nesse tipo de ambiente protegido e de que a energia para o metabolismo dos primeiros seres vivos viria de uma mecanismo autotrófico denominado quimiossíntese. Alguns cientistas acreditam que os primeiros seres vivos foram bactérias, que obtinham energia para o metabolismo a partir da reação entre substâncias inorgânicas, como fazem as bactérias encontradas atualmente nas fontes termais submarinas e em outros ambientes muito quentes (com cerca de 60 a 105ºC) e sulfurosos. Segundo essa hipótese, parece que toda a vida que conhecemos descende desse tipo de bactéria, que devia ser autotrófica.
Os que argumentam a favor dessa hipótese baseiam-se em evidências que sugerem abundância de sulfeto de hidrogênio (gás sulfídrico, H2S, que tem cheiro de ovo podre) e compostos de ferro na Terra primitiva. As primeiras bactérias devem ter obtido energia de reações que tenham envolvido esses compostos para a síntese de seus componentes orgânicos.
Algumas bactérias que vivem atualmente em fontes quentes e sulfurosas podem realizar a reação química a seguir, que, segundo a hipótese autotrófica, pode ter sido a reação fundamental fornecedora de energia para os primeiros seres vivos:
Sulfeto ferroso + gás sulfídrico ---> sulfeto férrico + gás hidrogênio + energia (pirita, um mineral comum) |
A energia liberada por essas reação pode ser usada pelas bactérias para a produção de compostos orgânicos essenciais para a vida, a partir de CO2 e H2O.
Assim, segundo essa hipótese, a quimiossíntese - um processo autotrófico – teria surgido primeiro. Depois teriam surgido a fermentação, a fotossíntese e finalmente a respiração.
Os debates sobre origem da vida ainda darão muito o que falar. A hipótese mais aceita sobre a evolução do metabolismo ainda é a heterótrofa, embora a hipótese autótrofa venha ganhando cada vez mais força.
Vida multicelular
Como surgiram os seres multicelulares? Evidências obtidas de estudos geológicos sugerem que os primeiros multicelulares simples surgiram na Terra há cerca de 750 milhões de anos! Antes disso houve o predomínio de vida unicelular, como formas eucarióticas simples. A partir dessa data, surgem os primeiros multicelulares, originados dos unicelulares eucariotos existentes.
Como referenciar: "Hipótese autotrófica" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:12. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Evolucao/evolucao7.php
Panspermia cósmica ou o que?
Para completar a teoria de 1920 de Aleksander I. Oparin (1894-1980) e do cientista inglês John Burdon S. Haldane (1892 – 1964) sobre a origem dos primeiros seres vivos, o pesquisador japonês Yoshihiro Furukawa propôs que os impactos de meteoritos nos oceanos primitivos da Terra podem também ter sido os causadores da formação de complexas moléculas orgânicas, que mais tarde originaram a vida.
Diferente da teoria da panspermia cósmica, que sugere que o aparecimento dos primeiros seres vivos na Terra veio dos cosmozoários, que seriam microrganismos flutuantes no espaço cósmico, Yoshihiro e sua equipe explicam, no artigo publicado em dezembro de 2008 pela revista científica britânica Nature Geoscience, que os impactos desses corpos sobre os mares primitivos, muito frequentes na época, podem ter gerado alguma das complexas moléculas orgânicas necessárias para a vida.
Embora muitos dos elementos necessários como pontos de partida para a existência de vida estarem presentes na Terra, sabe-se pouco sobre como se organizaram nos chamados blocos de construção da vida. Para tentar completar os estudos nessa área os pesquisadores utilizaram um simulador do impacto de um meteorito de ferro e carbono em uma mistura de água e amoníaco que imitava a química dos oceanos primitivos. O meteorito se que se chocou a uma velocidade de 2 km/s, causou pressão e temperatura que excedeu 2.760 graus Celsius.
Depois do impacto, a equipe encontrou no fluido uma mistura de moléculas orgânicas, incluindo um aminoácido simples e ácido graxos.
A partir desse ponto, os cientistas concluem que os impactos de meteoritos nas massas de água da Terra primitiva podem ter contribuído para a criação de moléculas orgânicas complexas que formaram as bases da vida.
Como referenciar: "Panspermia cósmica ou o que? " em Só Biologia. Virtuous Tecnologia da Informação, 2008-2020. Consultado em 16/09/2020 às 01:14. Disponível na Internet em https://www.sobiologia.com.br/conteudos/jornal/noticia4.php
A evolução do metabolismo
Analisamos até agora o surgimento das primeiras formas vivas, e você deve ter notado que já mencionamos, para essas formas, algumas características importantes para conceituar um ser vivo. Esses primeiros organismos possuem compostos orgânicos na constituição de seus corpos, são celulares (unicelulares, no caso) e têm capacidade de reprodução.
Não discutimos ainda uma outra característica dos seres vivos: o metabolismo. Vamos, então, analisar como deve ter sido a provável evolução das vias metabólicas nos seres vivos.
Todo o ser vivo precisa de alimentos, que são degradados nos processos metabólicos para a liberação de energia e realização das funções. Esses alimentos degradados também podem ser utilizados como matéria-prima na síntese de outras substâncias orgânicas, possibilitando o crescimento e a reposição de perdas.
Vamos analisar, então, como esses primeiros seres conseguiam obter e degradar o alimento para a sua sobrevivência. Duas hipóteses têm sido discutidas pelos cientistas: a hipótese heterotrófica e a autotrófica.
Hipótese heterotrófica
Segunda essa hipótese, os primeiros organismos eram estruturalmente muito simples, sendo de se supor que as reações químicas em suas células também eram simples. Eles viviam em um ambiente aquático, rico em substâncias nutritivas, mas provavelmente não havia oxigênio na atmosfera, nem dissolvido na água dos mares. Nessas condições, é possível supor que, tendo alimento abundante ao seu redor, esses primeiros seres teriam utilizado esse alimento já prono como fonte de energia e matéria-prima. Eles seriam, portanto, heterótrofos (hetero = diferente, trofos = alimento): organismos que não são capazes de sintetizar seus próprios alimentos a partir de compostos inorgânicos, obtendo-os prontos do meio ambiente.
Os seres capazes de sintetizar seus próprios alimentos a partir de substâncias inorgânicas simples são chamados de autótrofos (auto = próprio, trofos = alimento), como é o caso das plantas.
Uma vez dentro da célula, esse alimento precisa ser degradado. Nas condições da Terra atual, a via metabólica mais simples para se degradar o alimento sem oxigênio é a fermentação, um processo anaeróbio (an = sem, aero= ar, bio = vida). Um dos tipos mais comuns de fermentação é a fermentação alcoólica. O açúcar glicose é degradado em álcool etílico (etanol) e gás carbônico, liberado energia para as várias etapas do metabolismo celular.
Esses organismos começaram a aumentar em número por reprodução. Paralelamente a isso, as condições climáticas da Terra também estavam mudando a ponto de não mais ocorrer síntese pré-biótica de matéria orgânica. Desse modo, o alimento dissolvido no meio teria começado a ficar escasso.
Com alimento reduzido e um grande número de indivíduos nos mares, deve ter havido muita competição, e muitos organismos teriam morrido por falta de alimento. Ao mesmo tempo, teria se acumulado CO2 no ambiente. Acredita-se que nesse novo cenário teria ocorrido o surgimento de alguns seres capazes de captar a luz solar com o auxílio de pigmentos como a clorofila. A energia da luz teria sido utilizada para a síntese de seus próprios alimentos orgânicos, a partir de água e gás carbônico. Teriam surgido assim os primeiros seres autótrofos: os seres fotossintetizantes (foto = luz; síntese em presença de luz), que não competiam com os heterótrofos e proliferaram muito.
Esses primeiros seres fotossintetizantes foram fundamentais na modificação da composição da atmosfera: eles introduziram o oxigênio no ar, e a atmosfera teria passado de redutora a oxidante. Até os dias de hoje, são principalmente os seres fotossintetizantes que matem os níveis de oxigênio na atmosfera, o que é fundamental para a vida no nosso planeta. Em condições de baixa disponibilidade de moléculas orgânicas no meio, esses organismo aeróbios teriam grande vantagem sobre os fermentadores.
Havendo disponibilidade de oxigênio, foi possível a sobrevivência de seres que desenvolveram reações metabólicas complexas, capazes de utilizar esse gás na degradação do alimento. Surgiram, então, os primeiros seres aeróbios, que realizam a respiração. Por meio da respiração, o alimento, especialmente o açúcar glicose, é degradado em gás carbônico e água, liberando muito mais energia para a realização das funções vitais do que na fermentação.
A fermentação, a fotossíntese e a respiração permaneceram ao longo do tempo e ocorrem nos organismos que vivem atualmente na Terra. Todos os organismos respiram e/ou fermentam, mas apenas alguns respiram e fazem fotossíntese.
HIPÓTESE HETEROTRÓFICA |
Fermentação --> Fotossíntese --> Respiração |
As moléculas que constituem as células são formadas pelos mesmos átomos que são encontrados nos seres inanimados. Na origem e evolução das células, todavia, alguns tipos de átomos foram selecionados para a constituição das biomoléculas. Noventa e nove por cento da massa das células são formados de:
(A) Hidrogênio, carbono, oxigênio e nitrogênio.
(B) Oxigênio, sódio, carbono e hidrogênio.
(C) Silício, sódio, carbono e alumínio.
(D) Carbono, oxigênio, alumínio e sódio.
2- (UFRS)
O desenho a seguir representa, de forma esquemática, o aparelho que Miller usou em suas experiências, em 1953, para testar a produção de aminoácidos a partir de uma mistura de metano, hidrogênio, amônia e água, submetida a descargas elétricas:
I. Com esta experiência, Miller demonstrou que havia produção de aminoácidos em condições semelhantes às que havia na atmosfera primitiva da Terra.
II. Como a circulação do material por dentro do aparelho está completamente isolada do meio externo, não houve possibilidade de contaminação com outras substâncias.
III. As substâncias resultantes das reações químicas acumularam-se em 3 e 4.
IV. Com esta experiência, Miller também descobriu a composição química da atmosfera primitiva da Terra.
São corretas as afirmações:
(A) I e II
(B) II e IV
(C) III e IV
(D) I e III
(E) II e III
3- Cite e dê uma breve explicação sobre as três hipóteses sobre a origem da vida.
4- Discorra, em linhas gerais, sobre a hipótese da evolução química heterotrófica e também sobre a hipótese autotrófica; e os fundamentos para que cada uma fosse dada como correta.
5- Qual destas duas é a mais aceita, na atualidade? Por quê?
Nenhum comentário:
Postar um comentário